Simulation of Internal Undular Bores Propagating over a Slowly Varying Region
نویسندگان
چکیده
منابع مشابه
Generation of internal undular bores by transcritical flow over topography
In both the ocean and the atmosphere, the interaction of a density stratified flow with topography can generate large-amplitude, horizontally propagating internal solitary waves. Often these waves appear as a wave-train, or undular bore. In this article we focus on the situation when the flow is critical, that is, the flow speed is close to that of a linear long wave mode. In the weakly nonline...
متن کاملGeneration of undular bores in the shelves of slowly-varying solitary waves.
We study the long-time evolution of the trailing shelves that form behind solitary waves moving through an inhomogeneous medium, within the framework of the variable-coefficient Korteweg-de Vries equation. We show that the nonlinear evolution of the shelf leads typically to the generation of an undular bore and an expansion fan, which form apart but start to overlap and nonlinearly interact aft...
متن کاملMechanics of Internal Waves Propagating over a Varying Bottom Slope
We studied theoretically and experimentally the transformation, attenuation, and setup due to shoaling and breaking of internal waves in a two-layer fluid system on a uniform slope. An image processing technique was used to illustrate 2D instantaneous displacements of density interface. These results were compared with the calculated values by using the method of characteristics, the simple sho...
متن کاملA dispersive model for undular bores
In this article, consideration is given to weak bores in free-surface flows. The energy loss in the shallow-water theory for an undular bore is thought to be due to upstream oscillations that carry away the energy lost at the front of the bore. Using a higher-order dispersive model equation, this expectation is confirmed through a quantitative study which shows that there is no energy loss if d...
متن کاملIntegrable Shallow-Water Equations and Undular Bores
On the basis of the integrable Kaup–Boussinesq version of the shallow-water equations, an analytical theory of undular bores is constructed. A complete classification for the problem of the decay of an initial discontinuity is made.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal on Advanced Science, Engineering and Information Technology
سال: 2019
ISSN: 2460-6952,2088-5334
DOI: 10.18517/ijaseit.9.5.10236